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Possible experimental measure theory for theXXX-Heisenberg chain
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Raising and lowering operators for theXXX-Heisenberg chain are derived explicitly; as a result the dipole
moment operator is established. Based on the dipole transition mechanism in an external time-dependent
magnetic field, we propose a possible experimental measure theory to detect the energy spectrum of the spin
chain.@S1063-651X~99!11208-X#
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I. INTRODUCTION AND MOTIVATION

The XXX-Heisenberg chain~HC! defined by

H5J(
j 51

N S SW j•SW j 112
1

4D ~1!

is certainly one of the most important models in statisti
mechanics. The simple form of Eq.~1! belies the rich physi-
cal behavior that it displays, and an understanding of
physics of the HC in one-dimension has proved a formida
task for theoretical and mathematical physicists over the
six decades@1–10#. Exact solution of its eigenstates and e
ergy spectrum is given by the Bethe ansatz@11#. In the state-
ment of inverse scattering method, the structure of Be
ansatz levels is related to the spinon spectrum which is
ferent from the spin-wave theory@12#. Reference@13# has
provided an inelastic neutron scattering experiment for
one-dimensionalS51/2 Heisenberg antiferromagnet~for
J.0! KCuF3. However, little recent experimental work wa
done for the half-odd-integer ferromagnetic~for J,0) spin
chain. Up to now, to our knowledge, there has not bee
mature experimental measure theory that can guide exp
mental works for the ferromagnetic spin chain. The aim
this paper is to propose a possible experimental mea
theory for the ferromagnetic HC in the framework of qua
tum mechanics, based on the dipole transition mechanis
an external time-dependent magnetic field.

A standard quantum mechanical transition problem
general has the following format. The first quantity we mu
have is a HamiltonianH, which can be divided as follows:

H5H01HI , ~2!

where for some region of coordinate space or timeHI can be
neglected. Secondly, whenHI is neglected, it is meaningfu
to speak of the energy levels and corresponding states o
free HamiltonianH0 between which the transitions tak
place. These transitions are induced by the interactionHI .
Experiments cannot detect directly the stationary energy
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els En , instead, the frequencies~i.e., the energy intervals!
satisfying the Bohr frequency condition~in the unit\51!

vnm5En2Em . ~3!

It is stressed that the energy spectrum ofH0 can be deter-
mined from experiments is owing to the existence of t
external interactionHI . The physical nature of the externa
factor, which causes the quantum transition of the microp
ticles is arbitrary. In particular, it may be the interaction
the microparticles with electromagnetic radiation. Typic
examples can be seen in a hydrogen atom or a harm
oscillator, where a transition from one stationary state to
other is realized by an electric dipole moment. The dip
moment operatord̂ of any atom is expressible as a sum
raising and lowering operatorsL̂(n,m) between statesucm&
and ucn&@14#:

d̂5(
n,m

dnmL̂~n,m!. ~4!

Usually, in a hydrogen atom or a harmonic oscillator, t
dipole moment operator is the coordinater or the momentum
p of the particle, and the interactionHI is expressed by the
scalar product of the dipole moment operator and the ex
nal field. This kind of dipole transition mechanism is e
tended to the HC so that its energy spectrum can be dete
from experiments.

The paper is organized as follows. In Sec. II, to make t
paper self-contained, we briefly review the general definit
of raising and lowering operators. In Sec. III, explicit raisin
and lowering operators for the HC are derived, as a result
dipole moment operator for the HC can be established
Sec. IV, the interactionHI is written and experiment detec
ing the energy spectrum of the ferromagnetic HC is p
posed. The discussion is given in the last section.

II. GENERAL DEFINITION OF RAISING
AND LOWERING OPERATORS

Operator methods are among basic tools of quantum
chanics. For a physical system described by an observ
H, the eigenproblemHuE&5EuE& can be solved exactly du
to its raising and lowering operators, without dealing w
1486 © 1999 The American Physical Society
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Schödinger equation. In quantum mechanics, the factori
tion of H into raising and lowering operators for the discre
spectrum is a property of Hilbert space and is not restric
to any particular representation@15#. If H has a discrete spec
trum, then it can be written as

H5(
n

Enucn&^cnu, ~5!

whereucn& ’s are the complete and orthonormal basis sta
of H. Thus one way factorization

L̂1L̂25H2E0

is provided by operators which have the following spect
decompositions:

L̂15(
n

~En112E0!1/2ucn11&^cnu,

L̂25(
n

~En112E0!1/2ucn&^cn11u. ~6!

These mutually adjoint operators perform the raising a
lowering operators:

L̂1ucn&5~En112E0!1/2ucn11&,

L̂2ucn&5~En2E0!1/2ucn21&. ~7!

From Eq.~5! and Eq.~6!, one can have

@H,L̂6#5L̂6F6, ~8!

where

F65(
n

~En612En!ucn&^cnu ~9!

is an adjacent energy interval operator, sinceF6ucn&
5(En612En)ucn&. @Here we have placeF6 to the right of
L̂6 in Eq. ~8! to allow it to operate directly on eigenfunctio
ucn&, this will simplify the calculations.# In particular, when
F656\v, Eq. ~8! corresponds to the usual one in a ha
monic oscillator. WhenF6 is a function of H, i.e., F6

5 f 6(H), Eq. ~8! becomes

@H,L̂6#5L̂6 f 6~H !, ~10!

which is the case shown in Ref.@16#. Equation~8! or Eq.
~10! is the general definition of raising and lowering ope
tors expressing by a commutation relation. Note that the
plicit form of the raising and lowering operatorsL̂6 for a
specific Hamiltonian system need not be mutually adjo
@16#.

III. RAISING AND LOWERING OPERATORS
FOR THE HC

Although the HC has been studied for such a long tim
its raising and lowering operators are not clear yet. The p
pose of this section is to derive them explicitly.
-

d

s

l

d

-

-
x-

t

,
r-

Eigenstates withr (r 50,1,2,...,N) down-spins of the HC
are given by@11#

uc r&5Cr (
m1,m2,¯,mr

a~m1 ,m2 ,...,mr !f~m1 ,m2 ,...,mr !,

~11!

whereCr5@N!/ r !(N2r )! #21/2 is the normalized constant
f(m1 ,m2 ,...,mr) represents a spin state withr down-spins
on themj -th ( j 51,2,...,r ) sites, the coefficients

a~m1 ,m2 ,...,mr !5 (
P51

r !

expF i S (
j 51

r

uPj
mj1

1

2 ( fPj ,PnD G ,

~12!

are some exponential functions and defined only for the
deringm1,m2,...,mr , andP is any permutation of ther
numbers 1,2,...,r , Pj the number replacedj under this per-
mutation, andf jn52fn j . In Eq. ~11! for the case withr
50, uc0&5u↑↑...↑& is the vacuum state with all spins up
uc r& is the simultaneous eigenfunction ofH and thez com-
ponent of the total spin with the eigenvalues:

Er5J(
i 51

r

~cosu i21!, Sz5
N

2
2r , ~13!

whereu i ’s are related to wave vectors and satisfy the Be
ansatz equations.

Firstly, let us consider the raising operator that satisfie

Qr ,r 21
1 uc r 21&5uc r&, ~14!

namely, the raising operatorQr ,r 21
1 transforms the adjacen

eigenstates specified byr 21 andr . In general, theQr ,r 21
1 ’s

are not always the same for different sets$r ,r 21%, but
merely have the similar forms. Therefore, when we refer
an operatorQr ,r 21

1 , it always acts onuc r 21&. An arbitrary
stateuc r& can be obtained by repeated application ofQr ,r 21

1

to the given stateuc0& as follows:

uc r&5Qr ,r 21
1 Qr 21,r 22

1 ...Q2,1
1 Q1,0

1 uc0&. ~15!

Taking Eq. ~14! and Huc r&5Er uc r& into account, one can
verify that

~@H,Qr ,r 21
1 #5v r ,r 21Qr ,r 21

1 !uc r 21&, ~16!

where v r ,r 21 satisfies Eq.~3!. Qr ,r 21
1 will be determined

based on Eq.~16! in the following.
Guided by the observation that2 i (SW j3SW k)

25Sj
2Sk

z

2Sk
2Sj

z and

2 i ~SW j3SW k!
2u↑

j

↑
k

&5
1

2
~ u↓

j

↑
k

&2u↑
j

↓
k

&),

2 i ~SW j3SW k!
2u↓

j

↑
k

&5
1

2
u↓

j

↓
k

&, ~17!

we should expect to obtain that, after introducing the follo
ing unified raising operator:
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Qr ,r 21
1 52 i (

j ,k

N

Wjk
(r )~SW j3SW k!

2, Wjk
~r !52Wk j

~r ! , ~18!

Eq. ~14! might be satisfied. By the way, it is worth mentio
ing that the operatorJW52 i ( j ,k

N SW j3SW k1( j 51
N n jSW j is a Yan-

gian operator, and the local Yangian operator2 i (SW j3SW k)
make a transition between singlet and triplet states ofSW j•SW k
~to the definition of a Yangian and its realizations in qua
 -

tum mechanics can be seen in@17# and references therein!.
Qr ,r 21

1 is yielded by combiningWjk
(r ) with the local Yangian

operator and summation, henceQr ,r 21
1 has the most natura

form and is a generalization of the Yangian operator.
course, other forms of raising operators such asQr ,r 21

1

5( j 51
N a j

(r )Sj
2 can also be introduced, we will return to th

problem later.
To find the explict form ofQr ,r 21

1 , we need to determine
the unknown coefficientWjk

(r ) . The direct calculation shows
@H,Qr ,r 21
1 #52J (

j ,k5 j 11

N

Wj , j 11
~r ! H @~SW j 213SW j !3SW j 11#2

1
1

2
~Sj

22Sj 11
2 !2@SW j3~SW j 113SW j 12!#2J

2J (
j ,k> j 12

N

Wj ,k
~r !$@~SW j 213SW j !3SW k#%

22@~SW j3SW j 11!3SW k#
2

1@SW j3~SW k213SW k!#
22@SW j3~SW k3SW k11!#2}. ~19!

In the following, onlyuc0& is presumed known, and now we consider the casesr 51,2,... successively.
~a! r 51. After acting Eq.~19! on uc0&, one obtains

@H,Q1,0
1 #uc0&52 iJ (

j ,k5 j 11

N F S Wj 11,j 12
~1! 1Wj 21,j

~1!

2Wj , j 11
~1! 21DWj , j 11

~1! ~SW j3SW j 11!2G uc0&

1 iJ (
j ,k5 j 11

N

@~Wj 11,j 12
~1! Sj 12

2 1Wj 21,j
~1! Sj 21

2 !~SW j3SW j 11!z#uc0&

2 iJ (
j ,k> j 12

N F S Wj 11,k11
~1! 1Wj 21,k21

~1!

2Wj ,k
~1! 21DWjk

~1!~SW j3SW k!
2G uc0&

1 iJ (
j ,k> j 12

N

Wjk
~1!@Sk

2~SW j 213SW j !
z2Sk

2~SW j3SW j 11!z

2Sj
2~SW k213SW k!

z1Sj
2~SW k3SW k11!z#uc0 &. ~20!

Since (SW j3SW k)
zuc0&50, then Eq.~20! becomes

@H,Q1,0
1 #uc0&52 iJ(

j ,k

N F S Wj 11,k11
~1! 1Wj 21,k21

~1!

2Wjk
~1! 21DWjk

~1!~SW j3SW k!
2G uc0&. ~21!

Comparing Eq.~21! with Eq. ~16!, Q1,0
1 is a raising operator unless the factor

Wj 11,k11
~1! 1Wj 21,k21

~1!

2Wjk
~1!

is a real number and does not depend onj andk. If set

Wjk
~1!5

C1

C0

2

N
@a~ j !2a~k!#, a~ j !5exp~ i j u!, ~22!

Eq. ~21! yields

@H,Q1,0
1 #uc0&5~v10Q1,0

1 !uc0&, ~23!
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with

v105JS Wj 11,k11
~1! 1Wj 21,k21

~1!

2Wjk
~1! 21D 5J~cosu21! ~24!

is the energy interval betweenE1 andE0 . Under periodic boundary conditiona(m1N)5a(m), it is well-known that

u5
2p

N
n; n561,...,6S N

2
21D ,6

N

2
.

and(m51
N a(m)50. SinceE050, Eq.~24! leads toE15J(cosu21). After actingQ1,0

1 on uc0&, the next wave functionuc1& is
obtained.

~b! r 52. We set

uc2&5(
j ,k

a~ j ,k!f~ j ,k! ~25!

with unknown expansion coefficienta( j ,k). The direct calculation shows

@H,Q2,1
1 #uc1&5J (

j ,k5 j 11

N Fa~ j 21,j 11!1a~ j , j 12!

2a~ j , j 11!
22Ga~ j , j 11!f~ j , j 11!

1J (
j ,k> j 12

N Fa~ j 21,k!1a~ j 11,k!1a~ j ,k21!1a~ j ,k11!

2a~ j ,k!
22Ga~ j ,k!f~ j ,k!

2E1~Q2,1
1 uc1&)2 iJ(

j ,k

N H F (
j 51

N S SW j•SW j 112
1

4D G ~SW j3SW k!
2Wj ,k

(2) (
mÞ j ,k

N

a~m!f~m!J . ~26!

To makeQ2,1
1 a raising operator ofH, we must require

Q2,1
1 uc1&5uc2&5(

j ,k
a~ j ,k!f~ j ,k!, ~27!

Wjk
(2) (

mÞ j ,k

N

a~m!f~m!50, ~28!

and

E25
a~ j 21,k!1a~ j 11,k!1a~ j ,k21!1a~ j ,k11!

2a~ j ,k!
225

a~ j 21,j 11!1a~ j , j 12!

2a~ j , j 11!
22. ~29!

Sincea(m)5exp(imu) is an exponential function, then one can find that

1

iu

]

]m
a~ j !5d jma~m! ~m, j 51,2,...,N!, ~30!

wherem5xm is understood as the coordinate of the spin located on themth site of the lattice.
Due to Eq.~30!, to make Eq.~28! be valid, one findsWjk

(2) can be the following solution:

Wjk
(2)5

C2

C1

1

iu
a~ j ,k!F 1

a~ j !

]

]~m5 j !
2

1

a~k!

]

]~m5k!G ~ j ,k!, ~31!

with a still unknown coefficienta( j ,k). a( j ,k) will be determined by requiring that the two factors of the right-hand side
Eq. ~29! are real numbers and do not depend onj andk. Obviously, if we choosea( j ,k) to be the usual result of the Beth
ansatz, i.e.,

a~ j ,k!5Cei j u1eiku21C8ei j u2eiku1 ~ j ,k51,2,...,N!, ~32!

it yields
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a~ j 21,k!1a~ j 11,k!1a~ j ,k21!1a~ j ,k11!

2a~ j ,k!
5cosu11cosu2 .
a

n

e

ra-
w

r,

e

From Eq.~29! we must require

a~ j 21,j 11!1a~ j , j 12!

2a~ j , j 11!
5cosu11cosu2 , ~33!

thus

C

C8
52

122eiu11ei (u11u2)

122eiu21ei (u11u2) . ~34!

On the other hand, from the periodic conditiona( j ,k)
5a(k, j 1N), we obtain

eiNu15
C

C8
5e2 iNu2. ~35!

Equations~34! and~35! lead to the usual Bethe ansatz equ
tions

Nu152pI 2Q~u1 ,u2!, Nu252pI 82Q~u2 ,u1!,
~36!

with

Q~u,u8!52 arctanH sin
u2u8

2

cos
u1u8

2
2cos

u2u8

2

J
52 arctanH 1

2 Fcot
u

2
2cot

u8

2 G J ~37!

is an odd function, i.e.,Q(u,u8)52Q(u8,u), I and
I 8 (I 8ÞI ) belong to the set$6 1

2 ,6 3
2 ,...,6(N21)/2%.

Thus the energyE2 is recovered for the case withr 52 of
Eq. ~13! naturally. Sincea( j ,k) is defined in the orderingj
,k, to makeWjk

(2)52Wk j
(2) , we rewriteWjk

(2) as

Wjk
(2)5

C2

C1

1

iu
A~ j ,k!F 1

a~ j !

]

]~m5 j !
2

1

a~k!

]

]~m5k!G ,
~38!

with

A~ j ,k!5A~k, j !5H a~ j ,k! if j ,k,

a~k, j ! if j .k
. ~39!

One can note thatWj ,k
(1) is a number;Wj ,k

(2) is a partial
differential operator acting on the coefficientsa(m)’s. From
Eq. ~30!, one can obtain

1

iu

]

]m
uc1&5

1

iu

]

]m (
m51

N

a~m!f~m!5a~m!f~m!,

~40!
-

hence, the action of the partial differential operator (1/iu)
3(]/]m) is clear, when it acts onuc1&, the terma(m)f(m)
is picked up amonguc1&. Owing to these, direct calculatio
shows that Eq.~27! is valid naturally.

~c! For generalr , making use of the similar analysis, on
can obtainQr ,r 21

1 with the general solution

Wj ,k
(r )5

Cr

Cr 21

2

r

1

iu1

1

iu2
¯

1

iu r 21

3H (
l 1 ,l 2 ,...,l r 22Þ j ,k

N

A~ j ,k,l 1 ,l 2 ,...,l r 22!

3F 1

A~ j ,l 1 ,l 2 ,...,l r 22!

]

] j

2
1

A~k,l 1 ,l 2 ,...,l r 22!

]

]kG ]

] l 1

]

] l 2
¯

]

] l r 22
J ,

~41!

and the coefficientA( j ,k,l 1 ,l 2 ,...,l r 22) has the similar
meaning asA( j ,k) shown in Eq.~39!. Simultaneously, the
action of the partial differential operator (1/iu1)
3(1/iu2) ¯ (1/iu r)(]/]m1)(]/]m2) ¯ (]/]mr) is picking
up the terma(m1 ,m2 ,...,mr)f(m1 ,m2 ,...,mr) amonguc r&.

Now we return to the question whether the raising ope
tor Qr ,r 21

1 can take other forms. Careful calculations sho
that

2 i (
j ,k

N

Wjk
(r )~SW j3SW k!

2uc r 21&5(
j 51

N

a j
(r )Sj

2uc r 21&5uc r&,

~42!

where

a j
(r )5

1

2 (
kÞ j

N

Wjk
(r ) , ~43!

i.e., when acts onuc r 21&, Qr ,r 21
1 can be simplified to

Qr ,r 21
1 5( j 51

N a j
(r )Sj

2 , whose form is more simple. Howeve
a j

(r ) is more complicate thanWjk
(r ) , hence is more difficult to

determine thanWjk
(r ) . It is the reason why we introduc

Qr ,r 21
1 in the beginning, but notQr ,r 21

1 . Equation ~42!
means thatQr ,r 21

1 has the same effect asQr ,r 21
1 , they are

both the raising operators.
Next, we consider the lowering operatorQr 21,r

2 . Guided

by the observationi (SW j3SW k)
15Sj

1Sk
z2Sk

1Sj
z and

F i ~SW j3SW k!
11

1

2
~Sj

11Sk
1!G u↓j ↓k &5u↓

j

↑
k

&,

~SW j3SW k!
1u↓

j

↑
k

&5
1

2
u↑

j

↑
k

&, ~44!
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we set

Qr 21,r
2 5 i (

j ,k

N

Wjk8
(r )~SW j3SW k!

11(
j 51

N

b j
(r )Sj

1 ,

Wjk8
(r )52Wk j8 (r ), ~45!

which is different from the raising operator by a translati
term ( j 51

N b j
(r )Sj

1 .
Similarly, from the definition

~@H,Qr 21,r
2 #5v r 21,rQr 21,r

2 ! uc r&, ~46!

one has~i! for r 51,
er

q

Wjk8
(1)5

C0

C1

2

N~N21!

1

iu F 1

a~ j !

]

]~m5 j !

2
1

a~k!

]

]~m5k!G , b j
(1)50, ~47!

~ii ! for r 52,

Wjk8
(2)5

C1

C2

1

N21

a~ j !2a~k!

A~ j ,k!

1

iu1

1

iu2

]

] j

]

]k
,

b j
(2)5

C1

C2

1

N21

1

iu1

1

iu2
(
mÞ j

N
a~ j !1a~m!

A~ j ,m!

]

]m

]

] j
, ~48!

and ~iii ! for generalr .2,
Wjk8
(r )5

Cr 21

Cr

1

N2r 11

1

iu1

1

iu2
¯

1

iu r
(

l 1 ,...,l r 22Þ j ,k

3FA~ j ,l 1 ,...,l r 22!2A~k,l 1 ,...,l r 22!

A~ j ,k,l 1 ,...,l r 22!

]

] l 1
¯

]

] l r 22
G ]

] j

]

]k
,

b j
(r )5

Cr 21

Cr

1

N2r 11

1

iu1

1

iu2
¯

1

iu r

3H (
m1 ,¯,mr 21Þ j

1

A~ j ,m1 ,m2 ,¯,mr 21! F (
( l 1 ,...,l r 22)P(m1 ,...,mr 21)

A~ j ,l 1 ,...,l r 22!

1A~m1 ,m2 ,...,mr 21!G ]

]m1

]

]m2
¯

]

]mr 21
J ]

] j
. ~49!
an
of

for
Like Qr ,r 21
1 , when acting onuc r&, Qr 21,r

2 can be simplified
to Qr 21,r

2 5( j 51
N (a j8

(r )Sj
2), with

a j8
(r )5

1

2 (
kÞ j

N

Wj ,k8 (r )1b j
(r ) . ~50!

Consequently, the lowering operatorsQr 21,r
2 or Qr 21,r

2 are
also found.

In particular,Q1,0
1 5(m51

N a(m)Sm
2 , Q0,1

2 can be simplified
to a more simple formQ0,1

2 5(m51
N a21(m)Sm

1 when it acts
on uc1&. These two operators are mutually adjoint. Howev
for generalr .2, the Hermitian properties forQr ,r 2r

1 and
Qr 21,r

2 are not held.

IV. INTERACTION H I AND EXPERIMENTAL
MEASUREMENT

The Hamiltonian of the HC shown in Eq.~1! is regarded
as the free HamiltonianHo . To write the interactionHI , we
have to write the dipole moment operator at first. From E
~6!, one obtains

L̂1~r 11,r !5(
r

@~Er 112E0!1/2Qr 11,r
1 uc r&^c r u#,
,

.

L̂2~r 21,r !5(
r

@~Er2E0!1/2Qr 21,r
2 uc r&^c r u#. ~51!

HereQ6 can be replaced byQ6. Furthermore

L̂1~n,m!5@L̂1~r 11,r !#n2m,

L̂2~m,n!5@L̂2~r 21,r !#n2m ~n.m! ~52!

from Eq. ~4! the dipole moment operator is established.
Since the HC model is a spin-spin coupling system, it c

be affected by an external magnetic field. With the help
the dipole moment operator, the interaction Hamiltonian
the HC in a time-dependent magnetic fieldB(t) can be ex-
pressed as

HI~ t !5d̂•B~ t !, ~53!

where

B~ t !5(
l

@e~l!E l
(1)~ t !1e* ~l!E l

(2)~ t !#, ~54!

and
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E l
(1)~ t !5El~ t !exp~2 ivlt !, E l

(2)~ t !5El* ~ t !exp~1 ivlt !.

For the fieldB(t)5B01B1(t), we propose to put a stati
magnetic fieldB0 in the z direction at first, then to a ferro
magnetic HC, in low temperature, its ground state is
vacuum stateuc0& with all spins up. Secondly, we superpo
on the static field a time-dependent magnetic fieldB1(t)
which is perpendicular toB0 . Hence, the time-dependen
Schrödinger equation is

i
]

]t
uC~ t !&5„H1d̂•B~ t !…uC~ t !&. ~55!

The general stateuC(t)& is written as an expansion

uC~ t !&5 (
n51

Cn~ t !ucn&exp~2 iEnt !, ~56!

where ucn& ’ s are eigenstates ofH, the Hamiltonian of the
HC. We thereby obtain a set of coupled equations

2 i
d

dt
Cn~ t !5(

k
(
l

dnk•e~l!El exp@2 i ~vl2vnk!t#Ck~ t !

1(
k

(
l

dnk•e* ~l!El* exp@1 i ~vl

2vnk!t#Ck~ t !, ~57!

with vnk5En2Ek is the Bohr transition frequency. The firs
and the second excitations should be states with one and
spins down, i.e.,uc1& and uc2&, respectively. Obviously,
when vl5vnk , the magnetic resonance phenomena wo
happen, thus the energy intervals of the spin chain can
detected.

V. CONCLUSION AND DISCUSSION

In our work, based on the dipole transition mechanism
an external time-dependent magnetic field, a possible exp
mental measure theory to detect the energy spectrum o
ferromagnetic HC is proposed. Of course, there can be o
possible mechanisms. A question may arise naturally: H
does such a measure theory work for an antiferromagn
HC? In the following, we would like to make some discu
sions restricting to the dipole transition mechanism.

~i! Starting from the ferromagnetic ‘‘vacuum’’ stateuc0&,
if the raising operators are acted for enough times, then
even-spins antiferromagnetic HC, it will reach the grou
state. The corresponding ground state energy was first ca
lated by Hulthe´n using Bethe’s method@18#. The ground
state is a singlet with total spinST50 ~for N5even integer!,
e

wo

d
be

n
ri-
he
er
w
tic

or

u-

therefore the number of spin-deviates in the ground stat
r 5N/2 ~the proof that the total spin is indeed minimal in th
ground state is found in@19#!. des Cloiseaux and Pearso
~dCP! were the first to study the elementary excitations@20#,
which they interpreted as spin-wave-like states withST51. It
was later shown by Faddeev and Takhtajan@21# that the
natural excitations~spinons! actually haveST51/2, and
hence fermions. The underlying excitations occur only
pairs@21#. The dCP states are now understood to be a su
position of two spinons, one of which carries zero mome
tum. In our experimental measure theory, if the energy sp
trum is detected by the dipole transition mechanism, peo
might ask: What are the first and the second excited sta
And what are their degeneracies? These problems are
open and under investigation. However, guided by the ob
vation that the electric dipole moment usually transform
stationary state to its adjacent states in a harmonic oscill
or a hydrogen atom, it might guess that one and two sp
deviates to the ground state of the antiferromagnetic
should correspond to the first and the second excited sta
respectively. Ther .2 excitations would not be simple com
pounds ofr 51 andr 52, since the antiferromagnetic HC i
a strong spin-spin coupling model, nonlinear excitatio
should play an important role in the dynamical behavior
the one-dimensional system.

~ii ! Eventually, we would like to present an illuminatin
~but not a mathematically rigorous! argument on the low-
temperature thermodynamic properties. In the meas
theory described above, the Bohr transition frequencyvnk
equals to the magnetic resonance frequencyvl , which is
carried by a photon. The occupation number should be

^n&5
\v

expS \v

kBTD21

,

wherekB is the Boltzmann constant. If the dispersion re
tion v(k) is linear in k, one can show that~in one dimen-
sion!

lim
T˜0

c~T!5
]

]TE0

`

^n&dk}
p2kB

2

3\
T,

i.e., the specific heat is proportional toT in the low tempera-
ture.
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